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Vectorcardiographic Loop Alignment and the
Measurement of Morphologic Beat-to-Beat

Variability in Noisy Signals
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Abstract—The measurement of subtle morphologic beat-to-beat
variability in the electrocardiogram (ECG)/vectorcardiogram
(VCG) is complicated by the presence of noise which is caused
by, e.g., respiration and muscular activity. A method was recently
presented which reduces the influence of such noise by performing
spatial and temporal alignment of VCG loops. The alignment is
performed in terms of scaling, rotation and time synchronization
of the loops. Using an ECG simulation model based on propaga-
tion of action potentials in cardiac tissue, the ability of the method
to separate morphologic variability of physiological origin from
respiratory activity was studied. Morphologic variability was
created by introducing a random variation in action potential
propagation between different compartments. The results indicate
that the separation of these two activities can be done accurately
at low to moderate noise levels (less than 10V). At high noise
levels, the estimation of the rotation angles was found to break
down in an abrupt manner. It was also shown that the breakdown
noise level is strongly dependent on loop morphology; a planar
loop corresponds to a lower breakdown noise level than does a
nonplanar loop.

Index Terms—ECG signal processing, morphologic beat-to-beat
variability, noise performance, VCG loop alignment.

I. INTRODUCTION

T HE ALIGNMENT of vectorcardiographic (VCG) loops is
useful in electrocardiographic (ECG) applications where

joint analysis of two or more loops is of interest. For example,
serial comparison of VCG recordings overcomes certain prob-
lems when combined with loop alignment which are commonly
associated with the analysis of standard 12-lead ECG recordings
[1], [2]. These problems include undesired shifts of the elec-
trical axis caused by slight interrecording changes in, e.g., elec-
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trode positioning or body position which make the comparison
of QRS waveform measurements more difficult.

The measurement of subtle beat-to-beat variations in QRS
morphology is another example where loop alignment has been
considered, primarily for the purpose of reducing the effects of
respiration [3]. This type of variability measurement was origi-
nally suggested as a means for studying electrical instability of
the heart. The variability was quantified as the ensemble vari-
ance of successive, time-aligned sinus beats, see, e.g., [4] and
[5]; an increased variance was considered as an indicator of in-
stability. In these earlier studies, methods for respiratory com-
pensation were either neglected or compensated for in a rather
basic fashion. Later, the importance of employing such compen-
sation techniques was demonstrated: loop alignment sometimes
reduced considerable morphologic variability to a value close
to the variability of the noise [3]. Similar results were obtained
using a lead-dependent, nonspatial compensation technique for
the measurement of morphologic QRS variability [6].

Still another application of loop alignment is the cancellation
of QRST complexes for the purpose of analyzing atrial fibrilla-
tion in the surface ECG/VCG [7]. This application is related to
the measurement of morphologic beat-to-beat variability, how-
ever, the residual signal, i.e., the atrial fibrillation waves, is now
the desired quantity rather than the aligned QRS waveforms.
The residual signal is obtained by subtracting an aligned, av-
eraged loop to each beat in the original ECG. It was found
that loop alignment produces a signal with smaller QRS related
residuals than does straightforward “averaged beat subtraction”
and, as a result, the residual signal is much better suited for spec-
tral analysis of the fibrillatory waveforms [8].

The present study investigates a number of issues which are
related to the performance of VCG loop alignment and focus, in
particular, on the maximum likelihood (ML) alignment method
[3]. It is evident that the performance of loop alignment depends
on the noise level and is likely to become inaccurate above a cer-
tain level. Few results, if any, have been presented in the litera-
ture which describe the performance in noise; this lack is prob-
ably due to that most studies involve ECG data acquired during
rest and thus has a low noise level. Nevertheless, loop alignment
is sometimes called for in noisy situations, e.g., for the purpose
of QRST complex cancellation (see above) or for the analysis
of data acquired during exercise. Furthermore, it is of interest to
assess how loop morphology influences alignment performance
at different noise levels. In this study, morphology is character-
ized by means of a measure related to how planar shape the loop
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exhibits. The properties of the estimated loop rotation matrix are
studied in terms of rotation angles for different loop morpholo-
gies. A breakdown noise level is heuristically established for the
angle estimates.

Another important aspect of loop alignment performance
is related to the measurement of morphologic variability. Al-
though techniques are necessary for separating, e.g., respiratory
activity from variability of physiological origin, it remains to
be shown whether this separation can be done accurately or at
the expense of a distorted physiological variability. In order
to study this aspect, an action potential model is here used
for generating controlled morphologic variability of the body
surface potentials [9], [10].

II. VCG LOOPALIGNMENT

This section summarizes the essentials of a recent method
for spatiotemporal alignment of VCG loops [3]. The method is
based on a statistical signal model in which it is assumed that
an observed VCG loop of the QRS complexderives from a
reference loop but has been altered by a series of transfor-
mations. The matrix is with each row vector contains
samples of an ECG lead. The reference loopis
and has additional samples in order to allow for observations
which constitute different subsets of samples from . The
tilde indicates that has been augmented with samples. The
following three transformations are considered for modeling ac-
tivities of extracardiac origin:Scalingby the positive-valued,
parameter allows for loop expansion or contraction;rotational
changes of the heart which are due to, e.g., respiration are ac-
counted for by the orthonormal, matrix (it should be
noted that the rotation matrix is fixed during the entire QRS in-
terval); time synchronizationis introduced in the signal model
by the shift matrix . Due to the larger size of , the observed
loop can result from any of the possible positions
in . The shift matrix is defined by the integer time shift

(1)

where . The dimensions of the top and bottom
zero matrices in (1) are equal to and ,
respectively. One of the zero matrices vanishes whenis .
The identity matrix is . The samples of the refer-
ence loop are equally divided into samples prepended and ap-
pended to the QRS centered interval, respectively. The observa-
tion model for one beat is thus described by

(2)

where the transformed reference loop is assumed to be addi-
tively disturbed by white, Gaussian noise.

Maximum likelihood estimation has been applied to the
problem of estimating the parameters that minimize the Eu-
clidean distance between corresponding points of the VCG
loops. The optimal estimates of and can be found by
solving the following minimization problem

(3)

where the Frobenius norm for an matrix is defined
by . The minimization in (3) is
performed by first finding closed-form expressions for the esti-
mates and under the assumption thatis fixed. The optimal
estimates of , and are then determined by evaluating the
error for different values of in the interval . The
resulting ML estimate of is given by [3]

(4)

where the columns of and are the left and right eigen-
vectors of the matrix . The matrices and
are obtained by singular value decomposition (SVD) of, i.e.,

(the diagonal matrix contains the singular
values). The index has been attached to in (4) since this
estimate is only optimal for one particular value of. The esti-
mate of can then be calculated since is available

(5)

where tr denotes the matrix trace. The time synchronization pa-
rameter is estimated by means of a grid search for the allowed
set of values

(6)

The estimate is then used to determine which of the estimates
in the set of estimates and that should be selected to yield

and .
The above loop alignment technique requires that the refer-

ence loop is availablea priori for alignment to the observed
loop . In this study, is simply selected as the first loop of
the loops available for alignment. Another approach of choosing

is, e.g., updating it recursively among already aligned beats.
With these choices of , it is obvious that the alignment of
to , as described by (3), can be done in a dual manner by in-
stead aligning to . In the following, each observed loop is,
therefore, aligned to and considered for further morphologic
analysis after compensation by the estimated transformation pa-
rameters (the definition of and the dual alignment was dis-
cussed in more detail in [3]).

The three rotation angles can be obtained from the estimated
rotation matrix by viewing this matrix as a product of three
planar rotations. It is shown that angle estimates can be obtained
by [3]

(7)

(8)

(9)

where denotes element of .
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Fig. 1. Block diagram of the cardiac simulation model.

III. SIGNALS FOR PERFORMANCEASSESSMENT

Both simulated and recorded ECG signals were employed for
assessing the performance of ML loop alignment. In particular,
the simulation approach was adopted since it allowed better con-
trol of the degree of morphologic beat-to-beat variability.

A. Simulation Model

The main blocks of the simulation model are presented below
(Fig. 1). The cardiac action potential model was originally de-
veloped by Wohlfart in a time continuous framework [9] but was
later recast into matrix formulation better suited for computer
simulation [11]. A very brief description of the action potential
model is here provided with the primary aim to introduce the
parameter controling morphologic variability; a complete de-
scription of the model is found elsewhere [9]–[11].

1) Action Potential Model—Morphologic Beat-to-Beat Vari-
ability: The propagation of action potentials in cardiac tissue is
represented by a matrix of elements which represents a
two-dimensional model of the heart wall ( and refer to the
width and length of the wall, respectively)

...
...

...
... (10)

where is the membrane potential at sampleof the
th compartment. The top and bottom row, and
, represent the potentials of the endo- and epicardium,

respectively.
Action potentials are simulated by means of ion currents,

stimulus currents and intercompartmental currents considering
the states of cell activation and inactivation and membrane
potential differences. Within this context, morphologic
beat-to-beat variability is introduced in the model, (11) found
at the bottom of the page, by assuming that the intercompart-
mental current is proportional to the voltage difference
between two adjacent compartments in the same column. Here,
the function can be viewed as a time-varying conductivity
between the endo- and the epicardium and is modeled by a
random sequence of uncorrelated, Gaussian variables

(12)

2) Body Surface Potentials:Since the relationship between
electrical excitation of cardiac tissue and body surface potentials
is complex, a simplified approach is used in which body surface
potentials are linearly related to the potential differences be-
tween the endo- and epicardium. The surface leads
are obtained by

(13)

where the matrix projects the potential differences
onto the leads in the vector that is a three element vector
representing the VCG signal. In practice, the projection matrix

is unknown and, therefore, has to be estimated. This can be
done by reversing the above procedure: knowledge of the sur-
face leads and the membrane potential differences can be used
to infer [11].

In this study, is determined such that the leads closely
resembled those of an orthogonal VCG lead configuration

recorded from a healthy subject, see Fig. 2(a); this
particular choice of is used for the performance assessment
presented in Sections IV-A and IV-B.

3) Noise Model: The simulation model is extended to ac-
count for noise of extracardiac origin, e.g., due to respiration
and muscular activity. Such modeling is done, similar to the
loop alignment model in (2), by assuming that the leads
in (13) are transformed by scaling and rotation but now on a
sample-to-samplebasis

(14)

The matrix can be computed as the product of planar ro-
tations with time-varying angles [11]. It is assumed that angular
variation is proportional to the amount of air in the lungs during
a respiratory cycle, a property which is modeled as the product
of two sigmoidal functions reflecting inhalation and exhalation,
respectively. The angular variation around leadis defined by

(15)

where the duration of inspiration and expiration is determined
by the parameters and , respectively. Another pair of pa-
rameters, and , describe the time delays of the sigmoidal
functions. The inhalation and exhalation become separated in
time when is different from . The parameter defines
the range of the angle variation. Similar variational patterns can
naturally be defined for leads and , however, these rotation

(11)
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Fig. 2. Morphologic variability shown as 50 superimposed beats (a) of the simulated signaly(k) (� = 0:0025), (b) after rotation around theX-axis(� =
15 ), and (c) after white noise has been added (� = 10�V).

angles were set to zero. The sigmoidal pattern is defined by the
following parameter setup:

The respiratory rate is set to 0.2 Hz and the sampling rate
to 1000 Hz. The scale factor in (14) is set to unity at all
times in this study. The additive noise is assumed to be a
white, Gaussian process with varianceand has no interlead
correlation.

Fig. 2(b) presents the combined effect of morphologic vari-
ability and rotation, as introduced by and , respectively.
Since rotation takes place around theaxis, only leads and

are influenced. Finally, Fig. 2(c) shows the end result of the
simulation model.

B. ECG Database

The effects of loop morphology on the alignment process
were investigated by means of a database containing subjects
referred for myocardial scintigraphy [12]. Thirty-four subjects
without any signs of ischemia or infarction were included for
this study. The ECG signals were recorded during rest for 5
min using a standard 12-lead configuration. The acquisition
was done at a sampling rate of 1000 Hz using equipment by
Siemens-Elema AB, Solna, Sweden. The VCG signal was

synthesized by linear combination of the 12 leads using the
inverse Dower weighting matrix [13]. For each subject, an
average beat was computed from normal sinus beats in order to
obtain a low noise level of the reference loop.

IV. PERFORMANCE OFVCG LOOPALIGNMENT

The performance of the alignment method is evaluated below
in terms of removing extracardiac noise in the presence of
morphologic variability (Section IV-A), accuracy of alignment
parameter estimates (Section IV-B) and sensitivity to various
loop morphologies (Section IV-C). Results presented in Sec-
tions IV-A and IV-B derive from the simulation model while
results in Section IV-C are based on the ECG database.

A. Morphologic Beat-to-Beat Variability

1) Performance Measures:The effect of loop alignment is
studied by means of performance measures which reflect mor-
phologic variability in relation to a reference beat. These mea-
sures are computed for beats at different stages of the simula-
tion model: for 1) noise-free beats (i.e., before white noise has
been added), 2.) noisy beats, and 3) aligned beats. Starting with
the measure at the third stage, this measure reflects sample-to-
sample morphologic variability after loop alignment and is de-
fined by

(16)
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Fig. 3. Morphologic QRS variability of (a) noisy beats� and (b) aligned beats� [cf. (19)]. The variability of the noise-free beats� is plotted as a solid line
for � = 0 �V.

where is the number of beats the th beat
of the aligned signal and is the reference beat (which here
is taken as the average of the noise-free beats, cf. [4] and [12]).
It should be noted that the quantities in (16) are vector-valued.
In order to compare morphologic variability at different noise
levels, the noise variance should first be estimated and corrected
for in each lead. An estimate of the noise variance is obtained
by

(17)

The interval was located before thewave onset ( was set to
50 ms) since it essentially contains variability due to noise. The
noise-corrected variability function is then defined by

(18)

Finally, the over-all measure of morphologic QRS variability is
obtained by summation of during the QRS interval

(19)

For the noise-free and the noisy beats, morphologic vari-
ability is computed in a similar way and the subindexesand
are attached instead (evidently an estimate of the noise variance
is not required for the first measure).

2) Results: Morphologic variability before and after loop
alignment was investigated in relation to the noise leveland
the morphologic variability , see Fig. 3. As reference value,
the same measurements for the noise-free beats are plotted as a
solid line in Fig. 3(a) and (b).

In the upper panel, the morphologic variability before align-
ment is a combination of physiological effects, rotation and ad-
ditive noise. The variability, , in leads and is larger than
in lead because of the rotation around theaxis only. In

the bottom panel, it is obvious that the variability due to rota-
tion can be essentially removed at low to moderate noise levels
while beat-to-beat variability caused by remains. It should
be noted that and in Fig. 3(a)–(b) have been corrected by
subtraction of the noise variance. Therefore, the increase inat
increasing noise levels is essentially due to less accurate align-
ment.

Two examples of different morphologic variability are
studied in further detail (Figs. 4 and 5). The first case has
a low noise level and low morphologic variability. In this
case, variability due to rotation is removed from the aligned
beats while the morphologic variability of the noise-free beats
remains. The second case contains beats with considerable
morphologic variability at a high noise level, see Fig. 5. The
effect of rotation is again considerably reduced by alignment,
however, the sample-to-sample variability of the aligned
beats no longer coincides with that of the noise-free beats, cf.
Figs. 4(d) and 5(d).

B. Estimation of Alignment Parameters

Rotation angles can be derived from the estimated rotation
matrix . The results presented below are similar to those in
Sections III in the sense that the estimated angles are compared
to the ones of the model at different levels of morphologic vari-
ability and noise.

1) Performance Measures:In the alignment method, the ro-
tation matrix is estimated only once for theth beat ( and the
related and ) while the rotation of the simulation
model is a time-varying function, i.e., and

. In order to compare these two quantities, the average of
the model rotation angles during theth QRS complex, , is
used as reference value. The error measure for the angle esti-
mates is given by

(20)
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Fig. 4. An example of small morphologic variability and low noise level (� = 0:001, � = 2 �V). (a) Noise-free beats. (b) Noisy beats. (c) Aligned beats. (d)
Corresponding QRS variability for the beats in (a), (b), and (c) plotted with solid, dotted, and dashed line, respectively. Note that the time scale ismagnified (d)
during the QRS interval.

where . It should be noted that a small
error is always present in (20) due to the once-per-beat estimate
of the loop alignment method. Fortunately, this error is negli-
gible except for when extremely rapid changes occur in the ro-
tation angles.

In the same way, the accuracy of the scale factor estimate
can be judged by comparison to the average valueas obtained
from the model scale function . The resulting error measure
is denoted with and is a scalar version of the definition in
(20).

2) Results: The resulting error measure for the angle es-
timation is presented in Fig. 6(a) for different degrees of mor-
phologic variability, , and noise levels, . An interesting be-
havior can be observed in lead where a distinct noise level
exists above which the performance rapidly deteriorates and es-
timates with large variance result. Here, this level is referred
to as thebreakdown noise level. This behavior can also be ob-
served in the other leads but the decrease in performance is not
as drastic as in lead.

The accuracy of the estimated scale factor is presented in
Fig. 6(b). In contrast to the angle estimates, no sharp increase in

can be observed at higher noise levels but instead the increase
is rather gradual. However, the results in Fig. 6(b) indicate that
the scale factor estimate becomes biased at high noise levels and
that decreases, in general, for an increasing. It should be
recalled that was identical to one in the simulation model
at all times.

For a somewhat higher noise level ( V), it is ap-
parent that the estimated rotation angles follow the true values
very well, see Fig. 7(a). For a slightly increased noise level
( V), however, the rotation is no longer reliable for all
beats, see Fig. 7(b). In such cases, anomalous angle estimates
result at various points in time [at 11, 14, and 19 s in Fig. 7(b)].

C. Dependence on Loop Morphology

An interesting extension of the results presented in Sections
IV-A and IV-B is to investigate the relationship between loop
morphology and breakdown noise level. This relationship is
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Fig. 5. An example of large morphologic variability and moderate noise level (� = 0:004 and� = 24 �V); seeFig. 4for further details.

here pinpointed by use of the ECG database where various
degrees of white noise has been added to each averaged beat.1

1) Performance Measure:Loop morphology was character-
ized by an over-all measure reflecting the planarity of a loop.
This measure is defined as the ratio between the minimum and
the maximum singular values of the VCG loop matrix

(21)

The limiting values of are zero and one which, thus, cor-
respond to an entirely planar loop and a loop which extends
equally into all three dimensions, respectively.

The breakdown noise level is taken as that noise level
which produces angle estimation errors which in each lead ex-
ceed a certain threshold value. The vector definition of these
noise levels is given by

(22)

1Each loop in the database was normalized using the Frobenius norm in order
to reduce the influence of differences in signal-to-noise ratio.

where the maximum error, , is

(23)

and is a vector with all elements equal to one. The choice of
threshold value was based on the observation that the error

is small below a certain noise level while then rapidly in-
creasing to a considerably larger error value. By settingequal
to , the noise level at which angle estimates became anoma-
lous was accurately identified. The noise level was incre-
mented in steps of 5V.

2) Results: Fig. 8 shows that the accuracy of loop alignment
is strongly dependent on loop morphology since the breakdown
noise level ranges from 5V to 70 V. It should be noted that
the breakdown noise level is selected from the lead with the
lowest level. These results also suggest that an essentially linear
relationship exists between loop planarity and breakdown noise
level. Fig. 9 exemplifies the range of this level by means of two
loops with high and low degree of planarity, respectively, and
accordingly a low and high breakdown noise level, respectively.
It is obvious from Fig. 9(a) that the planar loop is almost entirely
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Fig. 6. Error measures for (a) rotation angle estimates and (b) scale factor estimates as functions of� and� . (c) The average of the scale factor estimates (note
that the noise level� is shown in reversed order to simplify the interpretation of the diagram).

Fig. 7. Estimation of rotation angles at differing noise levels. (a) Angle estimates from leadsX , Y , andZ are shown with dotted, dashed, and dash-dotted line,
respectively, for� = 16 �V. (b) As in (a) but with� = 24 �V. The morphologic variability was set to� = 0:004. The solid line shows the original angle
variation in leadX . Note that the scales of the vertical axes in (a) and (b) differ.

Fig. 8. Breakdown noise level as a function of loop planarity. Note that the
breakdown noise level is taken from the lead with the lowest level.

inscribed by two dimensions due to an almost linear dependence
between the transformed leads and (the transformation is
explained in the figure text). In Fig. 9(b), the loop extends into
all three dimensions and, accordingly, the corresponding break-
down noise level is much higher than for the case in Fig. 9(a).

V. DISCUSSION

A. Simulation Model

An important advantage with the simulation approach is that
the morphologic QRS variability is assigned a parametric de-
scription, here introduced by the parameter. This property
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Fig. 9. VCG loops with (a) a low� (� = 0:015) and (b) a high� (� = 0:12).
The loops have been rotated to their singular planes whereX , Y , andZ
corresponds to the axes of the singular values in decreasing order.

is critical when assessing the compensation of, e.g., respira-
tory activity in the presence of morphologic variability. Several,
rather complex models of cardiac action potentials have been
described in the literature, see, e.g., [14]. The action potential
model in [9] was considered suitable because of its simplicity
and its modest computational demand while still providing suf-
ficient waveform fidelity for the present purpose.

The effects of respiration were described by a sigmoidal
variation pattern of the rotation angles assumed to reflect
changes in lung volume during inspiration/expiration. Several
alternatives to that pattern were investigated but did not produce
results which differed significantly from those presented here.
For example, other angular patterns, e.g., a sinusoidal one,
were studied as well as the effect of increasing respiratory
rates, ranging up to 30 breaths/min, but these modifications
had negligible influence on the various performance measures.
Rotation was introduced around theaxis only, however, from
a mathematical point of view there is no fundamental difference
between rotation in one or in several leads when performing
the SVD. As a consequence, rotation in several leads does not
produce results which differ from those of a single lead.

B. Morphologic Variability

The measurements presented in Fig. 3 clearly showed that
variability due to respiration was substantially reduced by loop

alignment while the underlying morphologic QRS variability
was not much influenced. At high noise levels, the variability
measurements, , became biased because the performance of
the loop alignment method deteriorated. This property is, of
course, closely related to the breakdown of the angle estimates
as characterized by the diagrams in Fig. 6(a). However, it should
be noted that measurements on morphologic variability does not
exhibit a breakdown noise level as striking as that of the angle
estimates, cf. Fig. 3(b) versus Fig. 6(a).

Although the results on morphologic variability were based
on only one particular loop morphology (selected from a normal
subject), a wide range of other morphologies can easily be sim-
ulated by means of different body surface projection matrices

. The variability measures and were computed for sev-
eral other morphologies but only the latter measure turned out
to possess a strong dependence on morphology; further results
related to were, therefore, omitted.

C. Loop Morphology

Although VCG loop alignment has been investigated within
several contexts in the literature, the relationship between loop
morphology and noise level established in Section IV-C appears
to be new. By using a measure related to loop planarity, it was
demonstrated that the alignment breakdown noise level had an
essentially linear dependence on loop planarity, cf. Fig. 8. This
result thus implies that the measurement of noise level and loop
planarity can be motivated for prediction of loop alignment re-
liability.

Normal subjects have VCG loops which, in general, are more
planar than those of, e.g., patients with myocardial infarction. It
is well-known that myocardial damage is often associated with
loops which include bites, abnormal transitions or sharp edges
which makes the loop less planar [15]. Therefore, such differ-
ences in loop characteristics imply that alignment can be ex-
pected to be more robust in infarct patients than in normal sub-
jects. The results presented in Section IV-C are of limited value
since they are based on a rather small database.

Although the effects of a time-dependent scale factor, ,
were not explicitly studied, important insights of the properties
of were, nevertheless, inferred when was set to one in the
noise model. Most notably, it was found thatbecame increas-
ingly biased (underestimated) as the noise levelincreased. It
remains to be explained what causes the bias in.
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